

ME 327: Design and Control of Haptic Systems Spring 2020

Interactive Session 10: Kinesthetic haptic devices: Stability

Allison M. Okamura Stanford University

Questions from precorded video?

effect of time delay

review stability in the context of the s-plane

common second-order system: $m\ddot{x} + b\dot{x} + kx = f$

take the Laplace transform of both sides:

$$\mathcal{L}[m\ddot{x} + b\dot{x} + kx] = \mathcal{L}[f]$$

$$ms^{2}X(s) + bsX(s) + kX(s) = F(s)$$

$$(ms^{2} + bs + k)X(s) = F(s)$$

transfer function/characteristic equation:

$$\frac{F(s)}{X(s)} = ms^2 + bs + k$$

Time Delay

Padé approximation

This adds a left half plane pole and a right half plane zero!

In breakout groups: Discuss/calculate how time delay affects the maximum stable stiffness of a virtual wall

$$X = \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \left(\text{xvall} - e^{-\text{ST}} \times \right)$$

$$X \left(1 + e^{-\text{ST}} \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \right) = \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \times \text{vall}$$

$$X \left(1 + e^{-\text{ST}} \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \right) = \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \times \text{vall}$$

$$X \left(1 + e^{-\text{ST}} \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \right) = \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \times \text{vall}$$

$$X \left(1 + e^{-\text{ST}} \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \right) = \frac{\text{ke}^{-\text{ST}}}{\text{ms}^{2}+\text{bs}} \times \text{vall}$$

 $1 + \frac{k}{ms^{2}+6s} \cdot \frac{1-T_{5}}{1+T_{5}} = C$ $\frac{(e^{-2iT})}{}$

No delas

Corrected from the chief of the complete when gone complete which against the plant of the chief of the complete when gone of the plant of the chief of the chief

HAPKITS!!

Fill out address form TODAY (see announcement on Canvas)

Reminders:

Assignment 4 due today Look for Assignment 5 posted later today

Quiz will be discussed later — there are still a couple students who need to take it

Office Hours/Q&A with Allison until 10 am. Question queue (see tab with today's date): https://tinyurl.com/HapticsAllison